Here are just a few reasons to support and in-depth journalism

23 Apr
From the editor-in-chief:Dreamers seek driver's licenses in WyomingAs WyoFile’s Spring Fund Drive enters its final week, we want to take a moment to thank those of you who have given. So far we’ve seen many returning donors as well as a slew of first-time gifts. We appreciate all of the generous support. If you haven’t given yet, we invite you to join in supporting top-shelf journalism in Wyoming.



This week WyoFile features “Subsidair: Tiny Wyoming airline tops in federal support,” by WyoFile reporter Gregory Nickerson. It was $4.4 million in taxpayer funds that convinced Great Lakes Airlines to move its headquarters to Cheyenne in 1999. The airline still soars above all others in the amount it receives in controversial federal subsidies. Now local travelers are bypassing the state’s airports because of unreliable service. Is the investment worth it? “If everyone seems to have one bad story, that undermines the whole purpose of the subsidy in the first place,” said Rod Godby, UW professor of economics.


Capitol Beat

Lawmakers watch as feds bring Obamacare to Wyoming

WyoFile continues its healthcare coverage this week with“Lawmakers watch as feds bring Obamacare to Wyoming,” by WyoFile reporter Ron Feemster. Wyoming legislators stood on the sidelines, as did many of their colleagues in other states, hoping that Obamacare would go away. Now many of those states are moving on while Wyoming’s legislative leaders claim wisdom in allowing the federal government to implement a health insurance exchange.


Kerry Drake

Wyoming needs to do a better job caring for its homeless, but there’s no need to go back to square one. This week in The Drake’s Take, Kerry Drake says that if the state had a better coordinated effort to provide people shelter, it could nearly triple the amount of federal funds spent annually on services and programs. But it doesn’t, and Wyoming is leaving a lot of money on the table that could be put to good use.


Kelsey DaytonThis week in Peaks to Plains, Kelsey Dayton writes about the increasing use of electrified fences as an alternative to hanging food to avoid bear encounters in the backcountry. Forest Service officials say it requires special permission. But if used properly an electrified fence can deliver 9,000 volts. “It’ll knock you on your butt,” said John Gookin.


Kelsey DaytonIf you missed it on Friday, you’ll want to read Gregory Nickerson’s newest Capitol Beat post to get the details behind Wyoming’s loss of $53 million in federal mineral royalty revenues. This most recent loss due to the federal “sequester” scuffs Wyoming’s freshly revised budget, and it appears the state may not have any legal recourse, “leaving only the option of taking up the matter with Wyoming’s congressional delegation.”


For the latest Wyoming news from a wide variety of sources across the state and around the world, check ourWyoming News Reader each weekday morning.

— Dustin Bleizeffer, editor-in-chief
WyoFile is a non-profit corporation exempt from taxation under Section 501(c)(3) of the U.S. tax code. All contributions to WyoFile are tax deductible.

Support WyoFile

NOTE TO EDITORS: WyoFile columns and stories may be used by Wyoming media outlets free of charge with credit to See our republication terms for details.


Scientist says hydraulic fracturing has caused pollution in Wyoming aquifer

4 May

Our organization (and my employer), the Wyoming Outdoor Council, helped to fund an analysis by  Dr. Tom Myers (Ph.D. in hydrogeology/hydrology from the University of Nevada/Reno) of the EPA’s draft study of groundwater contamination in rural Pavillion, Wyoming.  Myers’ study fully supports the EPA’s preliminary finding that fluids and chemicals commonly associated with hydraulic fracturing have contaminated the groundwater resource in the area near Pavillion, Wyoming.

Dr. Myers also concluded that the well design was poor because the surface casing does not extend below the level of the water wells, a practice not permitted in many states but not disallowed in Wyoming.

In his report, Myers says that the situation in rural Pavillion is not an analogue for other ‘gas plays’ where geology and hydrology might be different.  The report should nevertheless serve as a strong warning to those that would argue that hydraulic fracturing has never contaminated groundwater and that it never will.  It is crucial that industry work with regulators to more effectively protect the environment and a resource that, in Wyoming, belongs not only to ours but to every generation.

Dr. Myers report is as follows —



April 30, 2012

Review of DRAFT: Investigation of Ground Water Contamination near Pavillion Wyoming

Prepared by the Environmental Protection Agency, Ada OK

Prepared by: Tom Myers, Ph.D.

Hydrologic Consultant

Reno NV


After consideration of the evidence presented in the EPA report and in URS (2009 and 2010), it is clear

that hydraulic fracturing (fracking (Kramer 2011)) has caused pollution of the Wind River formation and

aquifer.  The EPA documents that pollution with up to four sample events in the domestic water wells

and two sample events in two monitoring well constructed by the EPA between the level of the

domestic water wells and the gas production zone.  The EPA’s conclusion is sound.

Three factors combine to make Pavillion‐area aquifers especially vulnerable to vertical contaminant

transport from the gas production zone or the gas wells – the geology, the well design, and the well

construction.  Natural flow barriers are not prevalent in this area, so there are likely many pathways for

gas and contaminants to move to the surface, regardless of the source.  There is also a vertical gradient,

evidenced by flowing water wells, although its magnitude and extend are undefined, to drive advective

vertical transport.  The entire formation is considered an underground source of drinking water, but 169

gas wells have been constructed into it; this is fracking fluid injection directly into an underground

source of drinking water.

The well design is poor because the surface casing does not extend below the level of the water wells, as

is required in many other states, and because the wells contain substantial borehole lengths without

surface casing or cement between the production casing and the edge of the borehole.  This allows

vertical transport of gas and fluids and decreases the protection against leakage during fracking or gas

production.  Third, the EPA documented many instances of sporadic bonding, which simply means the

cement does not completely seal the annulus between the production casing and the edge of the

borehole.  This provides pathways which could allow gas and contaminant transport along the well bore.

The EPA also appropriately accounted for the potential that their monitoring well construction could

have explained the contamination.  “Since inorganic and organic concentration patterns measured in the

drilling additives do not match patterns observed in the deep monitoring wells and because large

volumes of ground water were extracted from the wells during development and prior to sampling, it is

unlikely that ground‐water chemistry was at all impacted by drilling additives.”(EPA, 2011, p 7).

Myers Review of DRAFT: Investigation of Ground Water Contamination near Pavillion Wyoming                       2


The EPA also demonstrated that the inorganic geochemistry in the monitoring wells is substantially

different than that which would occur naturally in the area, and that the enrichment of numerous

constituents is most likely due to the interaction of fracking fluid with the groundwater near the

sampled well.  This is particularly true for the elevated levels of potassium, chloride, and pH.

Any of the three contaminant transport pathways suggested by the EPA could be responsible for the

contamination moving from the fracking zone to the drinking water wells.  The EPA has also presented

evidence that contamination in surface ponds has not caused the contamination in the water wells or

their monitoring wells.

The situation at Pavillion is not an analogue for other gas plays because the geology and regulatory

framework may be different.  The vertical distance between water wells and fracking wells is much less

at Pavillion than in other areas, so the transport time through the pathways may also be low compared

to other gas plays.  It is important, however, to consider that the pathways identified at Pavillion could

be applicable elsewhere (Myers, 2012; Osborn et al, 2011).  In addition to improving and enforcing the

relevant regulations, monitoring the pathways between the target formation and aquifers should be

standard at all gas plays with fracking.

The following recommendations would improve the analysis and continue the study into the future

made throughout this review.

1. The EPA should continue data collection to better verify the sources and map the potential

contaminant plumes.

2. EPA should map the gas production wells according to their construction date.  The EPA should

also compare the locations of observed contamination with the nearby well construction dates

to estimate the travel times from the sources to the well receptors.

3. The EPA should map the depth to water prior to sampling in the water wells.  Using this, they

should map vertical gradients and correlate these gradients to areas with contaminants most

likely sourced to deep aquifers.

4. The EPA should install deeper monitoring wells near the shallow pits to better map the depth of

the plume emanating from those pits.

5. Data collection should continue so the results can be replicated.  An additional, deeper

monitoring well should be constructed in the gas production zone between the existing

monitoring wells to determine the vertical gradient and estimate the rate of vertical flow.

6. The EPA presents no evidence regarding the extent that fracturing extends above targeted

formations.  It may not be possible to prove whether this occurred at this site, but the EPA

should at least discuss the possibility.  It would be useful to perform some simple testing to map

the extent of fractures, as described by Fisher and Warpinski (2010).

Myers Review of DRAFT: Investigation of Ground Water Contamination near Pavillion Wyoming                       3



The Environmental Protection Agency (EPA) has released a study of groundwater contamination in the

Pavillion gas play in west‐central Wyoming.  Their preliminary conclusion is that gas well development

and hydraulic fracturing (fracking (Kramer, 2011)) has caused the contamination.  The EPA report is in

draft form and is open for comment until March 12, 2012.  This technical memorandum reviews the EPA

report.  This review was prepared with support from the Natural Resources Defense Council, Wyoming

Outdoor Council, Earthworks, Oil and Gas Accountability Project and Sierra Club.

This review discusses in detail the appropriateness of the study design, methodology, execution, results,

and interpretation and the reasonableness of the conclusions.  It specifically follows and considers the

EPA’s “lines of reasoning” approach used to reach its conclusion.


The study area is in the Pavillion gas field in west‐central Wyoming.  It lies northeast of the Wind River

Range.  The general geology for uppermost 1000 meters (m) is the Eocene‐aged ((56 to 34 million years

before present) Wind River Formation, which is interbedded sandstone and shale with coarse‐grained

meandering stream channel deposits.  The presence of stream channel deposits indicates that the

formation has been carved by river beds which left fluvial deposits interspersed among formation layers

These fluvial deposits often provide connectivity among formation layers and can fragment otherwise

continuous sedimentary layers.

The area has experienced gas development since the 1960s, with 169 gas wells constructed in the study

area.  EPA Figure 2 shows the gas well construction chronology. There were three main periods of

construction – 1963‐65, 1975‐83, and 1998 – 2006, with each subsequent period having more new wells

constructed than the previous period.  EPA does not specify when fracking first occurred, however.

Recommendation:  Add a map of gas production wells coded for the year or time period during which the

well was completed (or fracking occurred if substantially different).  This would allow an assessment of

travel time for contaminants to flow from production zones to the monitoring wells and domestic wells.

The US Geological Survey studied the water resources on the Wind River Reservation (Daddow 1996),

which surround this study area (but does not include it).  The Wind River Formation is the primary

source of drinking water on the reservation.  Daddow’s (1996) description of the formation indicates

that the formation consists of interbedded shale and sandstone with extremely variable permeability

that could lead to highly variable contaminant loads throughout the formation (Osiensky et al 1984).

Recommendation:  A more detailed description of the geology and hydrogeology of the area, perhaps

based on the relevant Geological Survey reports would provide more insight regarding geochemical

trends as found by the USGS.

Myers Review of DRAFT: Investigation of Ground Water Contamination near Pavillion Wyoming                       4



EPA started this study in response to citizen complaints regarding contamination in their water wells.

EPA established dedicated monitoring wells after two rounds of sampling various water wells rather

than prior to construction of the gas wells.  For much of their study data, the EPA had to use sample

data collected from existing water wells.  Water wells are not the best tool for monitoring groundwater

quality because, even if the well construction is of similar quality to a dedicated monitoring well, water

wells have much longer screens, or open intervals, than do monitoring wells.  They screen the most

productive formation layers, usually based on observations made during drilling, to maximize the

pumping rate while minimizing the drawdown.  Wells drilled specifically for monitoring wells also screen

productive zones, but target the screen to a specific zone, usually 20 feet or less thick, so that the

sample represents a given aquifer level.

Samples from water wells are therefore a mixture of water from all productive zones of the entire open

interval, weighted according to the transmissivity of each zone.    A domestic water well sample is useful

for determining whether a contaminant exists at some point in the aquifer, but a dedicated monitoring

well is necessary to determine which layer is contaminated.

EPA established two dedicated monitoring wells to supplement the data obtained from the water wells.

The new monitoring wells were primarily screened below the level of the water wells (Figure 1) and

above the gas production wells to “differentiate potential deep (e.g., gas production related) versus

shallow (e.g., pits) sources of groundwater contamination” (EPA p 5).  The EPA established just two

monitoring wells due to a limited budget (Id.).  EPA placed the monitoring wells’ screened interval along

the conceptualized vertical pathway between the potential contaminant source (i.e. the production

wells and/or zone) and the water wells.  The monitoring wells were designed appropriately to detect

and monitor contaminant movement upward from the production zone to the water wells; if the

monitoring wells had been constructed at the same depth as the water wells, they would not have

added substantial useful information.

Figure 1 (EPA Figure 3) shows that domestic water wells in the regions are screened at all levels down to

about 250 m, or more than 800 feet, with half of the wells being deeper than 300 feet, similar to the

depths found by Daddow (1996) in other areas of the aquifer.  However, the EPA states the information

source was from the State Engineer and homeowner interviews (EPA p 2).  It is unclear whether both

were used for each well.  It is my experience that homeowners have a poor concept of the depth of their

well unless they have paperwork that documents it.

Recommendation: The EPA should provide more information about the source of its water well

construction data, showing it in EPA Table A1.

The following table summarizes in general terms the wells that were sampled during each sampling

phase (other media were also sampled but not included in this table).  It is apparent that the wells

sampled in phases subsequent to the first phase depended in part on the results of the prior phases.

Myers Review of DRAFT: Investigation of Ground Water Contamination near Pavillion Wyoming                       5


Phase  Date  Domestic

and Stock



Wells   Stock Wells  Monitoring

Wells   Comments

I  3/09  35  2  0  0

II  1/10  17 (10



2  4  0  This phase came about

because EPA had detected

methane and dissolved

hydrocarbons during Phase I.

III  10/10  3 (2



0  0  2  Gas samples also collected

from the well casing of EPA’s

two deep monitoring wells.

IV  4/11  8 previously

sampled  0  3 previously

sampled  2  Added glycols, alcohols, low

molecular weight acids

Figure 1: Snapshot from EPA (2011) Figure 3 showing frequency of depth for gas wells (top), surface casing for gas wells, and

base of domestic wells.

EPA Table A1 lists the wells and the phase during which they were sampled, broken into eight data


1. anions and alkalinity

2. metals

3. alcohols and VOCs

4. low molecular weight acids and glycols

5. semi‐volatile organic compounds (SVOCs), pesticides, PCBs, and tentatively identified

compounds (TICs);

Myers Review of DRAFT: Investigation of Ground Water Contamination near Pavillion Wyoming                       6


6. gas/diesel related compounds, and hydrocarbons

7. bacteria

8. fixed gases, heavy hydrocarbons, dissolved carbon, and gas and water isotopic ratios

EPA Table A2a presents the geochemical results – anions, cations, and alkalinity.  Unfortunately, this

table does not consistently state in which phase the initial sample was taken.  Additional samples are

identified with a suffix on the sample number.  The other data tables in Appendix A provide results by

phase, but some results are found only in other reports, including URS (2009 and 2010).

URS (2009) reports the Phase 1 sampling (water wells only) in their Table 9, which shows concentration

of SVOC contaminants, including caprolactam at 1.4 ug/l at PGDW20, dimethylphthalate detected at

nine wells, and Bis (2‐ethylhexyl)phthata at 9.8, 6.4 and 12 ug/l in PGDW25, ‐20 and ‐141

Recommendation: The EPA should present and discuss the correlation of contaminant detects in the

domestic wells with depth.

, respectively,

and detect levels at ten other wells.   Total purgeable hydrocarbons were 26 and 25 ug/l in wells

PGDW05 and PGDW30, respectively.  Measurable methane concentrations were found in 8 wells.  Total

purgeable organics are generally gasoline and diesel range organics.  PGDW25 is one of the deeper wells

at 243.8 m below ground surface (bgs) and PGDW05 and ‐30 are at 64.0 and 79.2 m bgs, respectively.

URS (2010) reports the Phase 2 sampling in more detail.  It shows more than 20 wells with detectable

levels of a variety of semi‐volatile organics (URS 2010, Table 9).  The report does not assess these

detects with the depth of the well, but a quick glance suggests that most of them are on the deeper half

of the domestic wells.  An exception is PGDW39, reported to be just 6.1 m deep, although the EPA

should consider whether “6.1” is correct because if so it would be tens of meters shallower than any

other water well in the aquifer.

EPA based this study on four sample events including various subsets of domestic, municipal, and stock

wells and two sample events in the monitoring wells.  A reasonable question is whether the number of

samples is sufficient for developing an opinion?  A time series would help to identify a trend, but is not

necessary to establish presence/absence.  Objections to this data on the basis of there being just two

samples are without merit – simple presence of a substance that would not naturally occur in the

aquifer, if other causes can be eliminated, is sufficient to reach a preliminary conclusion that fracking

fluid has affected the aquifer.  However, the EPA should continue the sampling to determine whether

the concentrations are trending higher, or not, and determine how or whether the plume expands.


The EPA identifies three potential pathways for contaminants to reach the water wells from the fracking

(EPA, p 32).

! Fluid and gas movement up compromised gas wells.


The table did not highlight the values at PGDW14 and ‐20 as being exceedences.

Myers Review of DRAFT: Investigation of Ground Water Contamination near Pavillion Wyoming                       7


! Fluid excursion from thin discontinuous tight sandstone units into sandstone units of greater


! Out‐of‐formation fracking, whereby new fractures are created or existing fractures are enlarged

above the target formation, increasing the connectivity of the fracture system.

The EPA does not conclude which or whether any of these pathways actually facilitated the

contamination at Pavillion, although arguments throughout the document (and reviewed in this report)

support the potential for any of them.  EPA correctly notes that for all three pathways there would be a

correlation between the concentration of gas in the water wells and the proximity to gas well, as found

by Osborn et al (2011) in the Marcellus shale in Pennsylvania.  They also note that for all three

pathways, “advective/dispersive transport would be accompanied by degradation causing a vertical

chemical gradient” (EPA, p 32) as discussed in other portions of the report.  In other words, with

increasing distance from the source, both vertical and horizontal, the contaminant concentration would

decrease.  This would be due in part to chemical degradation, dispersion of a finite mass over a larger

volume, attenuation due to chemicals adsorbing to soil particles, and dilution by mixing with


The following sections consider evidence from various aspects of the EPA report in context of the


Lithologic Barriers

Very low permeability layers can prevent or impede the upward movement of fluid or gas from depth to

the water well zone, which in the Wind River Formation is the upper 250 meters (based on the reported

water well depth).  Extensive layers of shale are often sources of gas and/or capstones, which prevent

gas in underlying sandstone from escaping to the surface.  However, the shale must be horizontally

extensive and not fractured to be an effective seal, which is not the situation in the Pavillion field as

quoted above.  The formation is most productive (for gas) at its base with gas trapping occurring in

“localized stratigraphic sandstone pinchouts on the crest and along flanks of a broad dome” (EPA p 2).

Hypothesis:  The lithology in the Pavillion area does not prevent the vertical movement of gas or

contaminants to the surface because it is either not sufficiently extensive or impervious.  EPA claims

there is no “lithologic barrier … to stop upward vertical migration” (EPA p viii) and also that “there is

little lateral and vertical continuity of hydraulically fractured tight sandstones” (Id.).

Evidence:  EPA presented a lithologic cross‐section (Figure 20) showing mapped shale layers, production,

water, and monitoring wells and the points where the production wells had been fracked.  EPA found

that the lithology is “highly variable and difficult to correlate from borehole to borehole” (EPA p 15).

“Sandstone and shale layers appeared thin and of limited lateral extent” (Id.).  Pathways could go

around the intermittent shale so that contaminants in a given monitoring well may not result from the

nearest production well.  Pathways for movement through sandstone could be tortuous (EPA p 37);

vertical pathways through sandstone could be more tortuous than horizontal pathways because the

particles in sandstone tend to be elongated with the longer side being horizontal.

Myers Review of DRAFT: Investigation of Ground Water Contamination near Pavillion Wyoming                       8


Fracking has occurred for up to 45 years, so there is potential for many pathways from various sources

to a receptor well.  The travel time to a given point could be any time period up to 45 years.

Additionally, out‐of‐formation fracking occurring at any time could have shortened the pathway.

Conclusion:  The lithology in most areas would not prevent the vertical movement of contaminants to

the water wells because of the lateral variation.

Vertical flow and gradient

In order for contaminants to move from the fracked zones or from deep well bores to surface aquifers,

there should be a vertical hydraulic gradient.  Lacking such a gradient, movement could still be possible

due to lateral dispersion and upward concentration gradients, but it would be much slower.

Hypothesis:  There is upward flow in the Pavillion gas field that would support advection of

contaminants associated with fracking fluids to the monitoring and water wells.

Evidence:  In the Pavillion area, there are flowing wells, which would indicate an upward gradient, at

least at depth, which could drive vertical advection, or contaminant transport with the groundwater

flow .  Daddow (1996) also documented flowing wells in other areas of the Wind River Range, with the

depth range from 225 to 450 feet bgs.  EPA uses PGDW44 as an example (p 36).  This water well lies near

the middle of the field near MW01. MW01 showed a depth to water equal to 61.2 m at the beginning of

a purge for sampling (p 11 and Figure 8).  MW02 had depth to water of 80.5 m (p 12).  The depth to

water in the monitoring wells does not support the idea of an upward gradient, but being the only wells

at that depth, the data is not conclusive. Table A1 reports the PGDW44 well depth is 228.6 m; PGDW25

is deeper, at 243.8 m bgs.  MW01 is just 10 m deeper.  There is apparently an upward gradient at that

point because the well is flowing, but the analysis could be improved, as follows.

EPA documents that the shallower monitoring well has more natural breakdown products of the organic

contaminant like BTEX or glycol that are found in the deeper monitoring well and in fracking fluids (p

36).  It suggests that the contaminants in the shallow well are derived from the natural breakdown of

the contaminants found in the deeper well.  This could only occur if the wells represent a vertical flow

path, which they do and therefore these findings support the hypothesis of upward movement.

The gas found in the deep Wind River Formation is chemically similar to  gas in the underlying Fort

Union Formation suggesting that gas in the Wind River Formation has naturally moved upward until

captured in localized capstones, or “localized stratigraphic sandstone pinchouts” (EPA, p 2).  EPA

concludes that differences in gas composition and isotopes support the hypothesis of upward migration

through the various layers in the Wind River formation (p 29).  The fraction of ethane and propane in the

gas from domestic wells is mostly less than in the produced gas, but the isotopic composition is clearly

thermogenic, which suggest there is an ongoing “preferential loss of ethane and propane relative to

methane” (p 29, 38).  This evidence supports the hypothesis of upward fluid and gas movement.

Vertical movement could occur in the absence of a vertical gradient, if the pressurization caused by the

fracking is sufficient and there is a poorly developed well bore nearby.  Contaminants can migrate

Myers Review of DRAFT: Investigation of Ground Water Contamination near Pavillion Wyoming                       9


quickly upward through a leaky borehole due to the transient pressure gradient across an aquitard

created by the fracking pressure (Lacombe et al, 1995).

Conclusion:  There is evidence to support the concept of upward movement in the area, but it is not

conclusive.  The EPA should complete more studies documenting the vertical hydraulic gradient

throughout the area.

Recommendation:  The EPA report should document the depth to water in the domestic wells prior to

sampling so that they could map water levels for different well depths and determine the zones of

upward gradient.

Contamination from shallow pits

The presence of shallow disposal pits is an alternative source of contamination.  EPA notes that there

are 33 shallow pits that had been used for the “storage/disposal of drilling wastes, produced water, and

flowback fluids in the area of investigation” (EPA p 17).  As part of this study, the EPA communicated

with stakeholders to further determine the location of pits.  Shallow monitoring wells have found very

high concentrations of several contaminants that were also found in deeper water wells and the EPA

monitoring wells. These pits could have received the detritus of fracking operations in the past.

Hypothesis:   Contaminated water seeping from these pits could be responsible for the observed


Evidence:  Shallow monitoring wells that had been installed previously for reasons not associated with

this project (EPA, p 11) are reported to have very high contaminant concentrations, although this data is

not well summarized in the report.  The shallow monitoring wells are only 4.6 m bgs (EPA p 17), so there

is little information about how deep the contamination extends beneath the pits.  Assuming the pits are

some distance away from homes and people avoided them when constructing their water wells, it is

possible the shallow disposal pits are sources of contamination beyond the level the EPA considers

shallow, or 31 m bgs (Id.).

Irrigation could help to contain the contamination near the shallow pits because they would be located

in low recharge areas, either by design or in comparison with irrigated fields.  It would be unlikely that

the pits would have been constructed within irrigated fields, so the seepage from the pits may be much

less than the seepage beneath irrigated fields because of the continuous application of water to the

field, and for a much shorter time period.  Irrigation water would have seeped deeper and faster due to

the likely higher rate of application and effectively diluted or prevented the deeper circulation of

seepage from the pit.

Conclusion:  The EPA concludes that these shallow pits are not the source of contaminants found in

deeper water wells.  Because there is little contamination in intermediate‐depth wells, their conclusion

is sound, but the document would benefit from more analysis and discussion.

Recommendation:  The EPA should document more fully the contaminant plumes near the pits.

Specifically, deeper monitoring wells near the pits should be constructed to construct a contamination

Myers Review of DRAFT: Investigation of Ground Water Contamination near Pavillion Wyoming                       10


profile beneath the pits.  Better investigation of the pits as a source would also facilitate the remediation

of the groundwater near those pits.


The EPA used a line of reasoning analysis regarding the presence of fracking fluid constituents and gas in

monitoring wells in support of their preliminary conclusion that fracking has contaminated aquifers in

Pavillion Wyoming.  This is critical because the conclusion is not just that leakage from the wells or spills

caused contamination, but that the fracking process itself caused the contamination. EPA deemed the

multiple lines of reasoning approach necessary due to the complexity in detecting contaminants in

groundwater from deep sources.  This section critically reviews each of the EPA’s lines of reasoning.

High pH Values

The EPA monitoring wells both have very high pH, ranging from 11.2 to 12.0, which is much higher than

the level seen in the domestic water wells in the Wind River formation.  EPA concluded the high pH was

due to hydroxide (OH) which indicated the addition of a strong base to the background water (EPA p xii).

EPA’s reaction path modeling suggested that the addition of just a small amount of potassium hydroxide

to the sodium‐sulfate waters typical of deep portions of the Wind River formation would cause such a

pH change; EPA concludes from the modeling that the typical groundwater in the Pavillion aquifer “is

especially vulnerable to the addition of a strong base” (EPA p 20).

Potassium hydroxide was used as a crosslinker and solvent for fracking the production wells in the area

(EPA p 33), which could be a source of the OH to increase the pH of the water in the area of the

production wells.

The use of soda ash as a drilling additive when drilling the monitoring wells, often to control the pH, is a

possible alternate explanation for the elevated pH2

EPA Figure 12 verifies these pH values are higher than in the domestic wells, but also shows they fall on

the general trend of pH with elevation of the well open interval.  Based on this information, it is not

possible to conclude that the high pH is not natural, but the EPA’s conclusion appears to be justified

based cumulatively on all of the facts concerning pH. EPA should consider geophysical logging

completed by the industry if it includes pH logs to improve their analysis; such logs could provide pH

values for deeper areas that could be compared with the pH values for their monitoring wells.

.  Soda ash is 100% Na2CO3.  At a 1:100 mixing ratio

with water, the pH of dense soda ash was 11.2 (EPA Table 2).  The recommended ratio for use in

fracking fluid is 1:100 to 1:50 (EPA Table 1).  The pH of drilling mud varied between 8 and 9.  The

concentrations of neither sodium nor carbonate are abnormal in the monitoring wells.  If the soda ash

did separate from the drilling mud, mixing with background groundwater would further dilute it so that

the pH would be less than observed at the 1:100 mixing ratio.


MSE%3a%3a1053024648177449, visited 1/13/12

Myers Review of DRAFT: Investigation of Ground Water Contamination near Pavillion Wyoming                       11


Chemistry in the shallow wells has been affected by irrigation with Wind River water.  This irrigation

water has very low total dissolved solids (TDS) and neutral pH (<8) (EPA Figure 11) but the other shallow

groundwater wells show that the irrigation water picks up contaminants as it seeps.

The methods used to collect samples probably minimized contamination causing high pH in the

monitoring wells.  EPA purged the monitor wells until pH stabilized, a process which would minimize the

potential that any residual contamination from well development would have been sampled.

EPA’s analysis associated with Figures 11 and 12, explaining the shallow water geochemistry, is accurate

and useful.  It utilizes data from all of the wells in the area and surface waters to show water chemistry

trends through the study area.  It also shows how EPA’s monitoring wells differ substantially from the

general trends, supporting the conclusion that elevated pH in water samples from EPA’s deep

monitoring wells was likely caused by contamination with hydraulic fracturing chemicals.

Elevated potassium and chloride

The monitoring wells both have concentrations of K and Cl much higher, 14 to 18 times, than the

domestic water wells (EPA p 34).  Potassium concentration ranged from 43.6 to 53.9 mg/l and Cl

concentration averaged 466 mg/l (Id.).  The drilling additives reported by EPA to have been used at

Pavillion had a much lower concentration for both anions.  The fracking fluid contained several

compounds with high concentrations of both ions (Id.).  Therefore, the high concentrations of K and Cl

suggest contamination with fracking fluid.

The chloride concentration data plotted in EPA Figure 12 shows clearly that Cl concentration in two of

the three samples from EPA’s deep monitoring wells are much higher than those in domestic wells, and

EPA correctly assesses there must be a cause other than natural variation for the high concentrations.

However, in this case I disagree with EPA’s assessment that “regional anion trends tend to show

decreasing Cl concentrations with depth” (EPA p 19) because EPA Figure 12 shows little variation with

depth although there are a couple of high concentration outliers near the surface.  Regardless of the

interpretation of trend, concentrations from the EPA monitoring wells plot far higher than the Cl data

from domestic wells.

The chloride concentrations reported from the EPA monitoring wells are also much higher than reported

by the USGS in their Wind River study (Daddow 1996).  He describes the formation water as having TDS

concentration as high as 5000 mg/l, but Cl is a small proportion of that.  He also reported that the

highest Cl concentration on surface water sites was less than about 30 mg/l, so assuming the river

recharges the alluvial aquifer, the source of the groundwater is relatively clean with respect to chloride.

Cl concentrations at EPA’s monitoring wells are much higher than the regional values reported by USGS

in either ground or surface water on the Wind River Reservation, and are unlikely to be properly

considered “naturally occurring”.

For potassium, it is much clearer that the monitoring well concentrations exceed the domestic water

well concentrations by many times (EPA Figure 12, p 20).

Myers Review of DRAFT: Investigation of Ground Water Contamination near Pavillion Wyoming                       12


There is too little of either K or Cl in drilling mud or additives for it to have been the source or cause of

the enrichment in the monitoring wells.  Also, purging prior to sampling occurred until the specific

conductivity (SC) of the purged water reached a relative steady state (EPA Figure 9).  K and Cl both

contribute to the SC of the water being sampled.  Any potential contamination due to well construction

or development has most likely been purged from the system.

The high K and Cl concentrations are clearly present in the formation water near the monitoring wells.

Without a natural source as explanation, the mostly likely source is the fracking fluid which used

compounds that have high concentrations of both anions.  EPA has reasonably concluded the most likely

source of elevated K and Cl is fracking fluid.

Detection of synthetic organic compounds

The EPA found in the monitoring wells significant concentrations of isopropanol, diethylene glycol,

triethylene glycol, and tert‐butyl alcohol (TBA) (in MW02).  TBA was not directly used as a fracking fluid,

but “is a known breakdown product of methyl tert‐butyl ether and tert‐butyl hydroperoxide”.  The first

three products are found in fracking fluid based on the material safety data sheets (MSDSs) analyzed by

EPA, but the parent compounds of TBA have not been reported as such; importantly, MSDSs, which are

the source of the fracking fluid additives lists in the report, do not list all chemicals because the formulas

are proprietary.  That a chemical is missing from the list of additives is not evidence they were never in

fracking fluid.

Isopropanol was found in “concentrated solutions of drilling additives” at concentrations much lower

than detected in the monitoring wells (EPA p 35) and the others, glycols and alcohols, were not used for


None of these compounds naturally occur in groundwater.  The EPA is correct in its conclusion that

there is no acceptable alternative explanation and the most likely source of these contaminants is

fracking fluid.

Detection of petroleum hydrocarbons

EPA detected benzene, toluene, ethylbenzene, and xylenes (BTEX), trimethylbenzenes, and naphthalene

at MW02 (EPA, p 35).  They detected gasoline and diesel range organics at both monitoring wells (Id.).

These are not found in drilling additives, but the MSDSs showed a long list of additives in the fracking

fluid that could be the source of the contamination just cited (EPA p 35, 36).  For example, a BTEX

mixture had been used in the fracking fluid as a breaker and a diesel oil mixture was used in guar

polymer slurry (Id.).

EPA rejects alternative explanations that claim that substances, used on the well or pump, caused these

contaminant detections.  Specifically, the agency points out that the contact time for water with the well

or pump during purging and sampling would be so low that contamination would be unlikely, especially

after purging.   This would be especially true for the Phase 4 sampling which would have occurred after

Myers Review of DRAFT: Investigation of Ground Water Contamination near Pavillion Wyoming                       13


the well had been purged for sampling twice and had several months of natural groundwater flow

through it.

An alternate explanation considered by EPA is that the constituents are due to the groundwater being

above a natural gas field.  In fact, the EPA has noted that historically some wells encountered gas at

levels shallower than the monitoring wells.  EPA encountered methane while logging MW01 (EPA p 11).

EPA notes that the gas from the Wind River formation is “dry and unlikely to yield liquid condensates”

(EPA p 36).  They also argue that the monitoring wells have substantially different compositions of liquid

condensates, which would not result if they came from a common source of gas.  The explanation is

reasonable, unless there is a variation with depth.  Because these contaminants occur only at low

concentrations in the deepest domestic wells, the data does not rule out a natural gradient from the gas

sources at depth to the shallower zones of the formation.  However, the EPA explanation is supported

by the fact that the monitoring wells are far enough apart, more than a mile, that they must have

different gas well sources and represent different pathways..

Recommendation:  To further decrease the uncertainty, the EPA should complete an additional sampling

event with more domestic wells sampled.  It would also be desirable to have another monitor well

screened at the level of the gas wells.  The EPA could then develop a concentration profile as a function

of depth and formation layer.

Breakdown products of organic compounds

EPA verified a vertical pathway by showing that organic compounds in the shallower monitoring wells

are daughter products of the organic compounds found in the deeper monitoring wells.  This supports

the concept of upward migration with ongoing biologic transformation or natural degradation.  It

supports the concept of an upward flow gradient.  It cannot be asserted that the EPA monitoring wells

are on the same flow pathway, as they are more than a mile apart, therefore, the presence of

contaminants in the monitoring wells is evidence that there are multiple sources of contaminants at the

level of the gas production wells.

As part of this line of reasoning, the EPA presents the “hypothetical conceptual model” that “highly

concentrated contaminant plumes exist within the zone of injection with dispersed lower concentration

areas vertically and laterally distant from the injection points”.  This refers to how the fracking fluids,

once injected, simply disperse in all directions because there are no confinements, similar to how they

disperse from coal seam fracking.  It is consistent with the lower concentrations found further from the


EPA’s hypothesis is reasonable and explains the vertical movement of contaminants from a broad zone

of production wells.  Its simplicity indicates that fracking in such a formation will eventually lead to

contamination moving vertically from the gas wells – it is only a matter of time (Myers, 2012).

Sporadic bonding outside of production casing and hydraulic fracturing in thin discontinuous


Myers Review of DRAFT: Investigation of Ground Water Contamination near Pavillion Wyoming                       14


The last two lines of reasoning are considered together because they describe two pathways for fracking

fluid to get into the aquifer.  The fracking that occurs in the Pavillion gas field directly injects fracking

fluid into an underground source of drinking water.  Fracking occurs as little as 150 m below the bottom

of the deeper water wells.  The sandstone and intervening shale zones are discontinuous, which

suggests there are no significant continuous barriers to a vertical component of flow and contaminant

movement.  Fracking has also occurred for up to 40 years, so the pathways could have required up to 40

years for transport.  Sporadic bonding above the zone being fracked basically means the annulus

between the production zone and surface casing may not be fully sealed with cement which may allow

gas or fluids to move vertically among formation layers.  During fracking, the high pressure could force

some of the fracking fluid through improperly sealed well bores to contaminate formations nearer the

water wells.

Both of these lines of reasoning correctly describe potential pathways and sources of fluids in the

aquifer.  The EPA’s conclusions in this regard are reasonable and appropriate and conform to the

available facts and data.

Gas in Monitoring and Shallow Wells

Many shallow water wells have gas concentrations that exceed expected background levels.  EPA also

uses several lines of reasoning to conclude that gas has migrated to domestic wells from the fracked

zones, in addition to or instead of it occurring naturally in those wells.

Isotopic composition of gas samples from shallow wells, deeper monitoring wells and produced gas are

all similar in that all have a thermogenic origin.  However, the shallower domestic water wells have very

little higher chain carbon‐based gas, which suggests some dispersion and decomposition with vertical

movement (ethane and propane degrade faster).  The isotopic composition of most wells is thermogenic

and indicative of a deep source; URS (2010) noted that methane in one domestic well of eight sampled

with measurable methane had biogenic origins.

EPA also found that the concentration of methane in domestic water wells was generally higher in areas

of higher gas production, as counted by the number of gas wells.  Although it could be coincidental

because more gas wells are constructed where more gas naturally occurs, this seems unlikely because

the presence of gas in domestic water wells shows that gas is occurring outside of the production zones

deep in the Wind River Formation or high in the underlying Fort Union Formation. Gas would only move

naturally from depth to areas near the surface if there is a lack of containment which would have

depleted the gas source at some point in the last 40,000,000 years.  Thus, the gas wells have apparently

provided a migration pathway for gas released by fracking into overlying formations; this migration

occurred at a rate sufficient to allow gas to accumulate to a concentration capable of causing a blowout

at 159 m bgs near well PDGW05.

The area also generally has gas well designs that are below current industry standards in some states,

with surface casing not extending below the maximum depth of water wells and with a “lack of cement

or sporadic bonding of cement outside of production casing” (EPA p 38).  This would provide a pathway

from depth to at least the bottom of the surface casing, and allow gas leakage to higher levels in the

Myers Review of DRAFT: Investigation of Ground Water Contamination near Pavillion Wyoming                       15


aquifer.  Many states and areas require surface casing to extend below the maximum depth of USDWs

(a USDW must generally have TDS less than10,000 mg/l).  The gas well design in Pavillion appears to be

below industry standards because the surface casing does not extend even below the bottom of the

zone of domestic wells.  The pathways discussed above for fluid movement would also facilitate gas

movement (Id.).

The EPA acknowledges that poorly sealed domestic wells could also be a pathway (EPA p 38‐39).  This is

true but not a relevant argument because the gas wells are much deeper and actually tap formation

layers with gas.  Once gas reaches a domestic well, it is possible that the well provides an additional

pathway, but it is not the source of the contamination or the primary pathway from the gas source zone

to the aquifers.

The EPA also references the fact of citizen’s complaints (EPA p 39) as an indicator that gas

contamination started after fracking.  Citizens do not complain until a problem occurs.  Assuming their

water well was initially acceptable, they would complain when they noticed a change.


The general dispersion of contaminants upward from the fracking zone would result from either well

bore transport or transport through overlying higher permeability sandstone.  Transport through

wellbores that cross multiple aquifer layers, as the gas wells do near Pavillion, would allow contaminants

to reach the different levels.  However, the concentration reaching shallower formations would be much

less because the contaminants bleed off to the deeper aquifer zones (Nordbotten et al 2004).  Fracking

could also create the vertical gradient to temporarily cause contaminants to move vertically upward

through wellbores to contaminate shallower aquifer layers (Lacombe et al 1995).

Because there are not any significant horizontal confining units within the Pavillion Field, the upward

vertical contaminant transport is partially due to dispersion through relatively porous media.  In areas

with extensive horizontal confining layers, such as the Marcellus shale areas, transport through vertical

fractures, similar to that through wellbores, could transport substantial contaminant mass through the

impervious zones (Myers, 2012).  If the bulk media bounding the fractures have conductivity less than

one hundredth that in the fracture, the contaminants will transport with little dispersion, or loss, into

the bulk media (Zheng and Gorelick, 2003).

This appears to be the case in the Pavillion Field, given the existing geology.  Thus, unless fracking is very

carefully done, and well bores are solidly (not intermittently) bonded, this result is to be expected.  In

the case of the Pavillion Field, sporadic bonding is revealed and reported for 9 of the wells that EPA

examined well bore data made available to them.  To the extent that this is indicative of the entire field,

it would greatly increase the likelihood that transport of contaminants from the gas wells to the water

wells of the rural Pavillion residents would occur.

Myers Review of DRAFT: Investigation of Ground Water Contamination near Pavillion Wyoming                       16



Daddow, R.L. 1996.  Water Resources of the Wind River Indian Reservation, Wyoming.  U.S. Geological

Survey Water‐Resources Investigations Report 95‐4223.

Fisher, K, and N. Warpinski. 2010.  Hydraulic fracture‐height growth: real data.  Paper SPE 145949

presented at the Annual Technical Conference and Exhibition held in Denver, CO, October 30 –

November 2, 2011. Doi: 10.2118/145949‐MS

Kramer, D. 2011.  Shale‐gas extraction faces growing public and regulatory challenges.  Physics Today 64,

no. 7: 23‐25.

Lacombe, S., E.A. Sudicky, S.K. Frape, and A.J.A. Unger. 1995.  Influence of leaky boreholes on cross‐

formational groundwater flow and contaminant transport.  Water Resources Research 31(8):1871‐1882.

Myers, T. 2012.  Potential contaminant pathways from hydraulically fractured shale to aquifers.  Ground

Water,  doi: 10.1111/j.1745-6584.2012.00933.x.

Nordbotten, J.M., M.A. Celia, and S. Bachu. 2004.  Analytical solutions for leakage rates through

abandoned wells.  Water Resources Research v 40, W04204.

Osborn S.G., Vengosh, A., Warner, N.R., and Jackson, R.B. (2011). Methane contamination of drinking

water accompanying gas‐well drilling and hydraulic fracturing. Proceedings of the National Academy of

Sciences, v. 108, p. 8172‐8176.

Osiensky, J.L., G.V. Winter, R.E. Williams. 1984.  Monitoring and mathematical modeling of

contaminated ground‐water plumes in fluvial environments.  Ground Water 22, no. 3: 298‐307.

U.S. Environmental Protection Agency (EPA). 2011.  Draft, Investigation of Ground Water Contamination

near Pavillion, Wyoming.  Office of Research and Development, Ada, OK.

URS Operating Services, Inc. (URS) 2010.  Expanded Site Investigation – Analytical Results Report,

Pavillion Area Groundwater Investigation, Pavillion, Fremont County, Wyoming, CERCLIS ID #

WYN000802835.  Denver, CO.

URS Operating Services, Inc. (URS) 2009.  Site Inspection – Analytical Results Report, Pavillion Area

Groundwater Investigation Site, CERCLIS ID# WYN000802735.  File

Pavillion_GWInvestigationARRTestAndMaps.pdf.  Denver, CO

Zheng, C., and S. M. Gorelick 2003.  Analysis of solute transport in flow fields influenced by preferential

flowpaths at the decimeter scale.  Ground Water 41, no. 2: 142‐155.

Its not just the debt ceiling in D.C. – the U.S. House wants to dismantle the EPA

4 Aug

With so much dust kicked up over the debt-ceiling debate its been easy for partisan interests to obscure the mischief that the Republican controlled Committee on Appropriations has been up to. Their passage of H.R.2584, The Interior and Environmental Appropriations Bill, means that the U.S. House of Representatives will now be given the opportunity to strip from law and regulation any number of environmental protections as well as the people’s right to bring action against federal agencies. Among other things, it clearly shows that the majority party is intent on dismantling the EPA.

Following is a summary of some of the riders to the bill that the ranking minority member, Representative Jim Moran, called “a wish list for special interests”. You can see more at the minority party’s committee website. My take on many of the riders is in italics.

Blocks Permit Requirements for Pesticide Discharge in Waterways [Title V]: Amends the Federal Insecticide, Fungicide, and Rodenticide Act and the Clean Water Act to eliminate requirements for chemical companies and agriculture to obtain permits for pesticides entering waterways. In 2009 a federal court ruled that pesticide users must get an EPA permit in order to discharge pesticides directly into waterways. Many wonder that if a coal-fired power plant is required to get a permit for its discharges why shouldn’t a chemical company also be required. My guess is that if this passes, power companies will wonder much the same thing…..

Blocks EPA Regulation of Hard Rock Mining Operations [Section 455]: Prohibits funding for the EPA to develop additional financial assurance requirements for hard rock mining operations. Why shouldn’t a hard rock mine operator be required to provide adequate financial assurances? These are big and messy operations that require a lot of capital to develop/operate and cleanup. Just imagine how much more profitable they could be if they didn’t have to do the latter…that must be what the committee had to imagine, too.

Blocks Clean Air Act Regulations of Cement Industry [Section 448]: Prohibits funding for the EPA to implement Clean Air Act regulations on the manufacture of Portland cement. Many studies suggest that the cement industry contributes as much as 5-8% to global CO2 emissions. Meanwhile, the carbon load in the atmosphere has increased by about 36% in the last 250-300 years. From a climate change perspective it would seem logical to regulate one of the larger contributors to CO2 output. But the house committee can’t be bothered with logic.

Removes Protection of Grand Canyon from Uranium Mining Claims [Section 445]: Prohibits the Secretary of the Interior from implementing a land withdrawal to protect the Grand Canyon from new uranium mining claims. In June, Interior Secretary Salazar infuriated mining interests and Representative Cynthia Lummis by announcing a six month moratorium on new claims within a 1 million acre buffer around the Grand Canyon (something he was instructed to do by the 2008 version of the U.S. Congress). Its hard to imagine why a representative from Wyoming – which leads the nation in uranium reserves – would be so concerned with diminishing our state’s competitive advantage. Maybe its because the mining industry is one of her top campaign contributors.

Blocks Coal Ash Regulation [Section 434]: Prohibits EPA from regulating Fossil Fuel Combustion Waste (coal ash) under the Solid Waste Disposal Act. When over 1.7 million tons of coal ash broke free from a containment site in Tennessee and caused what some called the largest environmental disaster of its kind in U.S. history, many believed the disposal and regulation of coal ash would be a no-brainer. Apparently the mining and power industries thought so to and reached out to their friends in the U.S. House of Representatives to stop any attempt at tighter scrutiny

Blocks Modification of Clean Water Act [Sec. 435]: Prohibits EPA from changing or supplementing guidance or rules related to the scope of the Clean Water Act. This one is too easy – its all about hydraulic fracturing and industry’s efforts to avoid its responsibilities to our nation’s groundwater resources.

Blocks Update to Mountaintop Removal Mining Rule [Section 432]: Prohibits the Office of Surface Mining (OSM) from updating the Stream Buffer Rule. This is for the benefit of companies engaged in Mountaintop Removal Mining. Why should we care about moutaintop removal? Maybe a picture says it best (photo courtesy of and The Atlanta Progressive News)

Blocks Mountaintop Removal Mining Policy at Multiple Agencies [Sec. 433]: Prohibits EPA, the Corps of Engineers, and OSM from implementing or enforcing any policy or procedure contained in two specified documents on Mountaintop Removal Mining. See above

Blocks Judicial Review of De-listing Wolves in Wyoming/Great Lakes [Section 119]: Protects from judicial review any decision of the Secretary of the Interior to de-list wolves in Wyoming or the Great Lakes region. I hope my libertarian friends are alert to this one, although for different reasons. While this rider is specifically about the wolf, it clearly sets a precedent that could ultimately mean that no citizen is able to bring suit against the government for any reason.

Blocks Endangered Species Act Designations [Language on page 8]: Prohibits funding for Endangered Species Act listings or critical habitat designations. This rider means that the Wyoming Governor’s Executive Order on Sage Grouse will be the only thing that stands between resource development and the remaining population of the sage grouse in Wyoming. Goodbye habitat, goodbye bird.

With the summer adjournment of the house, the HR2584 is now waiting to be placed on the calendar. Most pundits predict easy passage of the bill (with the riders intact). That will mean the Senate will have to try to strip the riders and work out a compromise with the House or, failing to accomplish that, ask President Obama for a veto – something that it isn’t apparent the president is willing to do. In the meanwhile (and if you agree that these riders are a bad idea) please – PLEASE! – get in touch with your representative and senator and let them know how you feel. Here is a link that can help you with that –














What happens if we partner on natural gas with China?

3 Aug

The New York Times has recently reported that what it describes as industry insiders and independent operators have, in email exchanges, expressed doubts about the reserves that the natural gas industry as a whole touts as a result of new plays and new technology. The stories have ignited a firestorm of criticism by many of the world’s largest oil and gas companies including Exxon-Mobil.

Just three years ago, the Wyoming legislature’s joint interim Minerals, Business and Economic Development committee heard a presentation from an industry analyst that seemed to represent common wisdom in 2008, namely that the U.S. was running out of proven and economically viable natural gas reserves and that the nation would soon be faced with the prospect of importing the liquified version of natural gas from unfriendly countries like Russia and perhaps even be held hostage to imports from outright hostile countries like Iran. The analyst urged the committee to help domestic operators and in particular those in the state find, develop, and exploit as never before new gas fields or suffer the geopolitical and economic consequences. The next session of the Wyoming legislature found a way to help.

In early 2009, the legislature was asked to author a joint resolution which called on the U.S. Congress to resist any attempt to regulate or restrict the use of hydraulic fracturing (fracking) as a way to enhance outputs from natural gas wells. Legislators heard advocates of the resolution describe hydraulic fracturing as a safe and decades old technique that has been employed tens of thousands of times across the country as a way to stimulate natural gas well production with no known problems. Against that backdrop (and the analyst’s presentation to the interim committee) it came as no surprise that the legislature endorsed the resolution almost unanimously.

Fast forward to 2011 which looks so much different than 2008. The U.S. has been described as being awash in domestic natural gas, largely because of new and/or enhanced discoveries in places like New York, Pennsylvania, Louisiana, and Wyoming. The geopolitical threat seems to have disappeared (although perhaps it will resurface in a different way – more on that later) but at the same time there is a growing awareness that fracking is not without problems. As it turns out, the fluids used in the hydraulic fracturing process are laced with chemicals that in tiny concentrations are known to cause birth defects and cancer. If those chemicals get into groundwater they can cause contamination for generations. And despite assertions by Exxon-Mobil CEO President Rex Tillerson that there has never been a documented case of groundwater contamination resulting from fracking, it turns out that in 1984 a water well in West Virginia was contaminated and the user forced to abandon its use.

Now come the New York Times articles. They make it clear that hydraulic fracturing has been a springboard for natural gas development in tight shale formations which in turn seems to have fostered, in some independent operators, a gold rush mentality for finding new gas plays – and perhaps for selling them to the next speculator and that speculator to the next. There appears to be evidence that while hydraulic fracturing does stimulate a field into dramatic levels of production that those levels can quickly diminish. By examining production reports submitted to the Energy Information Administration (EIA), some industry analysts are now reassessing whether the nation is, indeed, awash in natural gas. Meanwhile, the boom of U.S. natural gas has been heard world wide and one of the nation’s biggest beneficiaries of the boom, Chesapeake Energy, has partnered with China on many of its domestic U.S. developments. China’s investment has gotten to the point where the Wall Street Journal reports that as much 3% of that country’s diesel fuel demand could be displaced with liquified natural gas by 2015.

The result of all of this could be intriguing to say the least. Industry operators, driven to produce according to their representations to investors and the EIA, will employ whatever technique they can muster to deliver the product. It means that hydraulic fracturing will be used routinely and groundwater will certainly be at risk. An even more ominous threat might be if the gas industry – always a rough and tumble bunch – has found itself entwined with its most formidable partner ever….China, one that may not look too kindly on being the unwitting participant in a speculator’s gold-rush fever. If China were the victim of another U.S. investment gone bad – this time energy development played on the world stage – it might make dealing with Russia and even Iran look easy by comparison.

Debating clean coal

9 Jun

On June 8, 2011 E&E TV hosted a discussion, moderated by their reporter, Monica Trauzzi, about the “shifting economics of coal”. The participants were Steve Miller of the American Coalition for Clean Coal Electricity; Bill McCollum of the Tennessee Valley Authority; Sen. John Barrasso (R-Wyo.); Reps. Colleen Hanabusa (D-Hawaii), Bill Johnson (R-Ohio) and Joe Barton (R-Texas); Jeff Holmstead of Bracewell & Giuliani; David Hawkins of the Natural Resources Defense Council; and Christine Tezak of Robert W. Baird & Co.

The discussion was lively but largely predictable and divided along the lines of each individual’s constituency and perspective. The remarks offered by Senator Barrasso and David Hawkins (of the NRDC) were of particular value and interest…but what if the Wyoming Outdoor Council had been invited to participate? What would the council say to challenge some of the preconceived notions and how it could move people like Senator Barrasso to a position that matches more closely with the imperative of a cleaner environment?

To answer those questions, Richard Garrett, the council’s Energy and Legislative Advocate, weighed in on the following transcript and offered responses as though he was in the discussion and offering ideas and solutions that match the Wyoming Outdoor Council’s mission and its member’s objectives. Here, then, is the expanded debate….


Lawmakers, analysts debate the changing dynamics of coal markets in the U.S. (Special Report, 06/08/2011)

 As the United States’ most abundant source of energy, what role will coal play as the United States moves toward a clean energy future? Is coal still a stable investment for utilities? Can clean coal and coal-to-liquids save the industry? During E&ETV’s Special Report, “Debating the Future of Coal,” lawmakers and analysts discuss the shifting economics of coal.

Sen. John Barrasso: Coal continues to be the most available, affordable, reliable and secure source of energy we have in the United States and we have a lot of it. It’s going to continue to play a very, very important role in our energy mix.

 Steve Miller: I view the future of coal-based electricity as one of limitless possibilities.

 Bill McCollum: Coal is challenged today, there are more concerns about the environmental impacts of coal, particularly regulated emissions and the need to put environmental controls on our existing coal plants over the next several years if we’re going to continue to operate those.

 Jeff Holmstead: Energy policy in the U.S. is determined almost entirely by EPA and the environmental community and we’ve seen over the last couple of years that there’s a real sense that at least the Obama administration doesn’t want any more coal.

 David Hawkins: Coal is very dirty in many respects, starting from when it’s mined to how it’s used and how the ash is disposed of. So it’s a fuel that needs to clean up its act and why does it need to clean up its act as opposed to we should just stop using it? Well, coal is very abundant.

Richard Garrett: There is no question that coal is available and because of shifted costs, seemingly cheap. In fact though, studies(including one by Center for Health and the Global Environment at Harvard Medical School) have shown that the burden of health care costs that result from the use of coal are substantial – Harvard estimates as much as $500 billion annually – but largely unrecognized. If those costs were included in the delivery of electricity through the consumer’s electric meter we’d get a much clearer idea about the real cost of coal to our health and even to the environment.

Monica Trauzzi: With Washington debating the long-term prospects for coal, is it still a stable investment for utilities?

Jeff Holmstead: The uncertainty created, especially by the new permitting process for CO2, makes it very difficult to permit new plants. So a part of what EPA has done, which is the regulation of greenhouse gases under this permitting program, has created just a lot of uncertainty. It’s very hard to get people to invest really in anything, but coal in particular.

Richard Garrett: Some forward looking executives at large utilities, including Ralph Izzo at PSEG, have recognized that climate change from greenhouse gas emissions has widespread implications for economic development and that there is a need to develop new technologies that are created by leveraging market mechanisms. He has also said that government should play a role in helping this along. In other words he is saying that climate change is real but that there are economic opportunities that can result from a reasonable mix of market forces and government regulation. Closer to home, an executive with the parent company of Rocky Mountain Power, Cathy Woolums of MidAmerican Energy, recently called on the state of Wyoming to begin to look at ways to permit greenhouse gas emissions. Underlying all of this is the fact that utilities are asking for predictable markets and regulations. Decision and policy makers must play their part.

Bill McCollum: There are cost challenges in the electric generation business, just as there are in any business these days. But there are also opportunities to look at the energy mix that we have, the energy portfolio that we use in this country to generate electricity, and to make the right sort of economic choices going forward. The potential of having to put controls on all of the existing coal-fired generation or make decisions to retire some of those, certainly creates cost pressure. TVA will spend $3 to $5 billion on clean-air controls for our fleet going forward and for alternative generation. And so that’s an important factor to look at as we go forward and consider how to best manage our energy mix.

David Hawkins: Oh, there are very definitely financial risks, I think that’s why you see essentially no new coal plants being proposed today in the United States. Wall Street understands that’s a terribly bad bet financially and it will continue to be a bad bet as long as there’s policy uncertainty about what happens with global warming policy. Coal use is not going to disappear overnight. What’s going to happen is that the growth in coal use is going to stop and it’s going to start losing market share. That is not going to put the coal industry out of business, but it is going to mean fewer and fewer growth prospects for coal.

Steve Miller: But we’re seeing major utilities like American Electric Power, like Southern Company, rural electric cooperatives around the country who are still making and proceeding with their investments in clean coal technology and in new coal plants.

Monica Trauzzi: Can clean coal, CCS and coal to liquids save the industry?

Christine Tezak: Well, certainly clean coal is in the eye of the beholder. I don’t think to certain environmental organizations there is such a thing and I would say that there is definitely a constituency that believes that we really have missed an opportunity as a country to not more robustly pursue supercritical coal, which has much lower emission rates on conventional pollution like NOX and SO2, plus about 15 to 20 percent less carbon intensity.

Jeff Holmstead: I think people in the energy business would say, you know, when you achieve these very low emission rates because you have an ultra-supercritical boiler, so you minimize your CO2 emissions as much as possible, you have a scrubber, you have an FCR, you have a bag house or some combination of those controls, that that really is as clean as you can make coal today.

Christine Tezak: I think the biggest challenge for the coal sector is this perception that it’s a redeemably dirty.

Colleen Hanabusa: To me, if you call anything a clean coal it’s got to be something that has no negative adverse effects. It isn’t something that if you weigh a cost-benefit analysis on something that you say, well, it seems to me that the benefits may outweigh the costs, whatever that cost may be.

David Hawkins: We try very hard not to use the term clean coal, because it just doesn’t accurately describe any coal use anywhere in the world. There is no such thing as clean coal.

David Hawkins: Well, NRDC has been very active and proud to be active in fighting new coal plant proposals in the United States and we have worked for 40 years to clean up or shut down coal plants that are dirty, polluting coal plants in the United States. So the efforts to do one or the other, clean up or shut down, are far from symbolic. They are critical to delivering public health benefits to American people.

Christine Tezak: Even when we’ve brought substantially cleaner plants to market that are dramatically better than what we have in place, there’s a resistance to bringing a cleaner coal plant to market instead of a recognition that we’d be better off replacing an older plant.

Rep. Bill Johnson: We’ve got lots of coal in this country and one of the problems that we have is the administration’s reluctance to go after our own natural resources. I think we need to explore more coal liquefaction. If we can determine how to turn coal into refinery grade crude, we solve a lot of problems.

Sen. John Barrasso: We all want energy to be as clean as we can, as fast as we can. That’s why I’ve introduced some bipartisan legislation. There are advanced technologies. You know, Wyoming’s coal is low-sulfur coal, clean coal efforts to go with technology to go, you know, coal to gas, coal to liquid.

Richard Garrett: I’d have to challenge the senator on that – I remember him saying when asked “what is clean coal?” that he answered “Wyoming coal” is clean coal. The fact is that coal is not clean – there are environmental challenges and disruptions all the way from the mine to the transmission line. While we are encouraged that Senator Barrasso is co-sponsoring legislation that would stimulate development of carbon capture and sequestration, we also see him proposing ideas like prizes for Air Capture Technologies of carbon that have been refuted by leading scientists around the nation. He has also proposed rolling back environmental protections that were signed into law by President Bush that were designed to reduce the military’s carbon footprint. So it seems like the Senator is taking one step forward and two steps back.

Steve Miller: We’re very interested in the legislation that’s being pushed by Senators Bingaman, Murkowski, Rockefeller, Barrasso on carbon capture and storage technologies and ways to advance that.

Jeff Holmstead: I don’t know anybody on the industry side who believes that renewables will be able to take up a big chunk of the slack for many, many years. So if we can get to seven, eight — I mean DOE has a very ambitious proposal that says we could get to 20 percent renewables. But that still leaves 80 percent that needs to be produced by something that’s more reliable like coal or gas or nuclear.

Richard Garrett: The president has said that as a nation we should, by 2035, get 80% of our energy from clean sources. Secretary Chu has said those sources include nuclear, renewables, natural gas and even coal. While this sounds a lot like the “all-of-the-above” approach that others have advocated, there is one key difference. The president has said these sources must be clean and so he is articulating a vision that doesn’t include business as usual for industries and resources that are damaging our environment. The president committed our nation’s financial resources to advancing this goal and is trying to work with legislators to make it a reality. Like I said before, though, one step forward and two steps back is not progress.

David Hawkins: Renewable energy is a tremendous opportunity and we can have renewable energy that is also firmed up with cleaner fuels like natural gas. And I think anyone who follows this issue realizes that a lot of existing coal plants are going to get replaced with natural gas plants and that will be a cleaner use of that electricity resource.

Steve Miller: We’re concerned as a coal centric organization about significant efforts to force or induce fuel switching to natural gas. Natural gas historically has been an extremely volatile fuel in terms of price and no one is certain right now whether the promise of shale gas will really prove to be one that can be relied on for any kind of significant fuel switching going forward.

Richard Garrett: Natural gas by many estimates is really not a lot cleaner than coal when the full life-cycle of its extraction and use is calculated. In Wyoming, exploration for natural gas has created health risks that we never faced before including potential contamination of groundwater from hydraulic fracturing; we’ve also seen hazardous levels of ozone as a result of gas field development. So while we recognize that natural gas has a role to play in our nation’s energy portfolio, we don’t see it as a magic bullet. In fact, if there is one (a magic bullet), its energy efficiency – research by McKinsey and Associates has suggested that the US economy has the potential to reduce annual non-transportation energy consumption by 23% by 2020 which in turn eliminates over $1 trillion in waste. Not only that, but the reduction in energy use would also result in the abatement of 1.1 gigatons of greenhouse-gas emissions annually—the equivalent of taking the entire US fleet of passenger vehicles and light trucks off the roads.

Bill McCollum: Overall I think you’ll begin to see our electric generating mix shift a bit toward a lower percentage of coal, while it will still be significant, and a higher percentage of gas-fired generation, nuclear and some of these other sources.

Monica Trauzzi: The Tennessee Valley Authority, a federally owned power company, recently reached a settlement with U.S. EPA to shutter 18 of its poorest performing coal-fired power plants.

Rep. Bill Johnson: You know, 18 plants, those are a lot of plants. I can’t speak for TVA, but I can tell you that that’s not something that the coal industry is excited about.

Richard Garrett: Taking 18 of the dirtiest coal fired power plants off-line is simply a recognition by the TVA that the economies of operating an out-of-date fleet built in the 1950s are no longer viable. These are many of the same plants that were exampled in the Harvard study that I mentioned earlier that pose real health risks to people living nearby to the tune of $27 billion annually. Not only that, but the plants were degrading air quality in one of our nation’s most important places, Great Smoky Mountains National Park. In Wyoming, we’ve seen similar air quality challenges from energy development that have damaged visual resources in the Wyoming Range, the Bridger-Teton National Forest, and Grand Teton National Park. The TVA has committed to a new Integrated Resource Plan that offers a strategic direction focusing on a diverse mix of electricity generation sources, including nuclear power, renewable energy, natural gas and energy efficiency, as well as traditional coal and hydroelectric power.

Bill McCollum: We set out a vision for the next 10 years which includes keeping our rights affordable, our reliability high and being very responsible in the way that we generate and deliver our electricity and that we also are shifting our portfolio to a different mix of sources which will be cleaner and more appropriate for the future.

Rep. Joe Barton: TVA is just kind of accepting the reality that some of the older coal plants, they’re not very efficient, need to be shut down.

Monica Trauzzi: As coal plants shut down, what impact do the closures have on the U.S. economy?

Richard Garrett: The US economy has always been the most robust, innovative, and resilient in the world. With the right mix of market forces and policy we will see new job creation, reductions in health costs, and improved energy security that will prepare us for an even better future. While coal has been reliable – and can prove to be so again with the right kinds of technologies – it shouldn’t be our only answer. We will thrive through energy diversification just as we do as a result of environmental diversity. The fact is that while the TVA is shuttering plants, they are also committing to a mix of new technologies and energy sources that will surely contribute to this kind of diversity. Why should we, as a nation, put all of our eggs in one basket?

Sen. John Barrasso: With coal being the most available, affordable, reliable and secure source of energy we have in our country, anything we can do to continue to use coal in a responsible way I think is going to be better for our economy long-term.

Rep. Joe Barton: I think that America has got the world’s greatest economy because we’ve had a free-market energy policy and a cornerstone of that policy has been the use of coal and it’s a strategic asset and an economic asset and I think one that can continue to be used in a way that benefits the economic prosperity for every American.

Bill McCollum: Coal prices have spiked. They’ve come back down and moderated a bit now, but foreign demand for coal is much higher than it used to be and that has put pressure on market prices. So we’ve seen roughly a doubling in some of the coal prices and there doesn’t appear to be a let up in the foreign demand for coal. So I think the economics of coal have shifted somewhat from the way they were traditionally viewed decades ago.

Jeff Holmstead: If all we do is succeed in increasing the energy costs here, we’re not going to do anything to deal with climate change because the Chinese and the Indians and the Indonesians and around the world, they have not only I think a political imperative, but a moral imperative to provide power for billions of people. And until we can-until someone can help them provide that power in a way that doesn’t involve the combustion of coal, people will continue to use coal all over the world, regardless of how many coal-fired power plants Sierra Clubs manages to shut down in the United States.

Sen. John Barrasso: For me coal is freedom.

Richard Garrett: Coal is not freedom. If we continue to rely on coal, in the ways that we have for the last one hundred years or more, we will see our options for how we deal with all the risks and challenges I’ve already spoken about – health, the environment, and jobs — reduced. That is not freedom. We need to make coal a resource that no longer forces us to conform or adapt to its problems and instead commit ourselves, as President Obama has envisioned, to making it one part (an important one) of a diverse, safe and clean energy portfolio.

Hello world!

9 Jun

Welcome to After you read this, you should delete and write your own post, with a new title above. Or hit Add New on the left (of the admin dashboard) to start a fresh post.

Here are some suggestions for your first post.

  1. You can find new ideas for what to blog about by reading the Daily Post.
  2. Add PressThis to your browser. It creates a new blog post for you about any interesting  page you read on the web.
  3. Make some changes to this page, and then hit preview on the right. You can alway preview any post or edit you before you share it to the world.